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Abstract. Template languages transform tree-structured data into text.
We study the reverse problem, transforming the template into a parser
that returns all the tree-structured data that can produce a given text.
Programs written in template languages are generally not injective (they
have multiple preimages), not affine (some input variables can appear
at several locations in the output), and erasing (they provide only a
partial view of the source), which makes the problem challenging. We
propose to solve this problem using concepts from abstract interpretation,
like the denotational style of abstract semantics, soundness, exactness,
or reduction, to reason about the precision and the recovery of all the
preimages. This work shows that Abstract Interpretation is a very useful
theory when reasoning about the reversal of non-injective programs.

1 Introduction

One of the most ubiquitous ways to format data into text is through the use of a
template engine, or template processor. They interpret a program in a template
language, which consists in a fixed text intertwined with specific instructions
that produces an output text, given tree-structured data as an input. The input
data often comes from XML, JSON, relational databases, or records from a
language providing the data. Examples of such template engines include Apache
Freemarker, Mustache, ERB, Jinja, Liquid, XSLT, or StringTemplate [38].

We study the reverse transformation, i.e. the problem of retrieving the input
data from the output text. In general, the problem of finding if a program p
admits an input that produces a given output w is undecidable. This is the case
for the template language that we want to address, as e.g. inversing a template
can be used to find the solutions of Diophantine equations, an undecidable
problem [28]. Thus, we cannot have an algorithm which is simultaneously sound
(i.e. does not forget about an input), complete, (i.e. does not return incorrect
inputs), terminating, and working on an expressive template language. Another
problem is that of finite representation of these inputs: if the transformation is
not injective (which is rarely the case, as the output is often only a partial view
of the input), the set of corresponding inputs can be large or even infinite; we
thus want a finite representation of this infinite set.

Our solution uses abstract interpretation [8] to solve the reverse transformation
of template processing of tree-structured data. Using abstract domains to finitely



represent an infinite set of JSON-like databases, our template reversing algorithm
is terminating (Section 4), sound (Section 5), and works on an expressive template
language (which can be easily extended, as shown in Sections 7 and 8). What we
have to give up is completeness; however, most of our operations are complete,
and our algorithm can detect if the set of values that it returns is exact or is
an over-approximation (Section 6). Our experiments (Section 8) show that, on
practical examples, it is effectively able to retrieve the part of the database that
was used to produce a given output.

Specifically, our main contribution is a technique to invert a function by

1. deriving a backward denotational semantics from the forward big-step seman-
tics of the language, with modifications such that the reverse algorithm will
need to explore only a finite number of evaluation trees (Section 4);

2. using abstract interpretation [8] on this denotational semantics to derive a
sound algorithm (Section 5), but also to reason about the precision (Section 6),
simplification by constraint propagation (Section 7), and extensions (Section 8)
of the algorithm.

While we show that template languages are a good fit for applying these techniques,
they are quite general and could be reused in other areas of reverse computation1.

2 Motivation and example

Our original motivation comes from the following practical problem. In embedded
systems, automated generation of code and data in source code is very common,
as this minimizes the storage and execution costs in the runtime. Template
languages are used to simplify the formatting of this source code.

If it is part of a safety-critical application, this generated source code must be
certified. One strategy for this is to certify the code generator. Because an error
in this generator can lead to an error when the system runs, such a generator
is considered to be critical component which must be qualified at the highest
assurance level, which is very costly.

An alternative certification strategy [33] is to develop an independent checker
that verifies that the generated source code corresponds to safety requirements,
independently of how the source was generated (this is similar to the translation
validation [40] approach found e.g. in CompCert [26]).

Because an error in such a checker cannot introduce new errors (it can only
omit to see existing errors), such a checker is less critical than a code generator
and needs only to be qualified at a low assurance level, which is much less costly.
The code generator may not even have to be qualified at all, as the certification
works on the generated code, independently of its provenance.

Figure 1 represents all the steps of this use-case: on the left, a team of devel-
oppers create (manually or automatically) a JSON database containing system
parameters from a high-level description of the system. Template processing is
1 In particular, reverse computation normally focus on injective function, while our
technique does require this limitation.
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Fig. 1. Verifying generated source code, featuring reverse template processing.

then used to generate source code using these parameters. On the right, the verifi-
cation team uses the checker first to retrieve a database by parsing the generated
source code; this retrieved database can be used to check that the parameters
comply with safety requirements. One may wonder why we cannot just reuse the
generated JSON database directly: the reason is that this would be considered a
common cause of failure by certification authorities, as the verification process
must be independent and cannot rely on intermediate artefacts produced by the
code generation. On the other hand, the templates can be reused, because they
can be viewed as a specification on how the source code has to be generated.

Since such a checker must work from the source code of the safety-critical
application, writing a parser extracting the data to validate from the source code
is a cumbersome task. When the source code has been produced using templates,
our idea is that the parsing can be done by reversing the template processing
– i.e. evaluating the template backwards, to retrieve the input data from the
output text. We can then validate that this retrieved data matches the safety
requirements of the system. Figure 1 represents all the steps of this use-case.

Let us examine a concrete example inspired by the actual industrial problem
that motivated this work. Consider this example of drones monitoring a sea area
from a location in Bermuda. Each drone is assigned a flight plan, which is a
sequence of coordinates. Each drone has limited memory, thus the flight plan is
generated as a static linked list in source code which is compiled and put inside
each drone. To make the flight plan more maintainable, the generation is split
in two phases: first, parameters are computed and stored in a JSON database;
second, source code is generated using a template processor. Figure 2 represents
the template generating this linked list, the input parameters, and the resulting
code, which can be compiled and linked to the drone autopilot.

Now imagine that the drone must be certified according to safety-critical
aeronautics standards. The computation of the flight plan parameters, having
to satisfy many antagonistic constraints, is a hard problem (encompassing the
traveling salesman), and certifying the code generator producing this flight plan
would be hard. Luckily, certifying the code generator is not mandatory, as only
the generated code must be certified (independently of how it was generated).
The safety requirements on the flight plan code are actually quite simple: (1) the
code must provide this data in a format that is suitable for the drone runtime,
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struct coord { float lat ; float lon; struct coord ∗next;};
〈for c in seq〉struct coord 〈= c.name:symbol 〉; 〈end〉
struct coord ∗start = &〈= first:symbol 〉};
〈for c in seq〉
struct coord 〈= c.name:symbol 〉 =
{ 〈= c.lat:float 〉 , 〈= c.lon:float 〉 , 〈if c.last〉 0 〈else〉&〈= c.next:symbol 〉 〈end〉 };
〈end〉

first 7→ hamilton

seq 7→


name 7→ hamilton
lat 7→ 32.36
lon 7→ −64.67
last 7→ false
next 7→ san_juan

 ::


name 7→ san_juan
lat 7→ 18.46
lon 7→ −66.10
last 7→ false
next 7→ miami

 ::


name 7→ miami
lat 7→ 25.76
lon 7→ −80.19
last 7→ true




struct coord { float lat ; float lon; struct coord ∗next;};
struct coord hamilton; struct coord san_juan; struct coord miami;
struct coord ∗start = &hamilton;
struct coord hamilton = { 32.31, −64.76, &san_juan };
struct coord san_juan = { 18.46, −66.10, &miami };
struct coord miami = { 25.76, −80.19, 0; };

Fig. 2. Forward evaluation of the template (top) on the input environment (middle)
yields the output text (bottom).

something which can be specified using the template; (2) the length of the route
must be small enough so that the drone does not run out of battery and fall.

To validate the parameters, we cannot just reuse the generated JSON database
directly, as this would be considered a common cause of failure by certification
authorities. The templates can be reused, as they can be considered as a specifi-
cation on how the source code has to be formatted. Thus, a suitable strategy to
certify compliance of the flight plan source code is to start from the code, and to:
1. Verify that this source code complies with the specified template (this checks
safety requirement (1)), and retrieve all the possible input parameters (the JSON
databases) that can produce the source code using the template; 2. Verify that
each possible input parameters satisfies the safety requirement (2).

Step 2. is application-dependent (Methni et al. [33] provides several examples,
such as verifying that communication buffers have sufficient size, that a static
schedule plan allows meeting every deadline, etc.), but we propose to automatize
step 1. using reverse template processing.

3 Background: the rtl template language

We study the problem of reversing templates on a simple functional template
language, whose syntax and semantics is given here. While simple, this language
is quite representative of how typical templates are developed; moreover, we
propose extensions to this language in Section 8.
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P 3 p, q ,x | p.f path
X 3x variable names
F 3 f field names
W 3u, v, w word (string)
T 3 t scalar types

I 3 i, j,w fixed word
| 〈= p:t 〉 replacement
| i i template concatenation
| 〈if p〉 i 〈else〉 i 〈end〉 conditionals
| 〈for x in p〉 i 〈end〉 iterations
| 〈apply φ with x = p〉 function call

Fig. 3. Syntax for the rtl template language

Notations We write equality by definition as ,, word concatenation as ·, and the
empty word as ε. The power set of a set S is written as P(S), and the empty set
is represented by {}. The domain of a function ϕ is represented by dom(ϕ). We
represent by Seq(S) the set of finite sequences of elements in S, and represent a
sequence of n elements by e0:: . . . ::en−1. A sequence of n elements in S can also
be considered as a function ∈ [0..n− 1]→ S.

We use Y ⇀ Z to represent the set of partial functions from Y to Z. If
Γ ∈ Y ⇀ Z, y ∈ dom(Γ ), and z ∈ Z, we note by Γ [x] ∈ Z the value bound to x
in Γ , and by Γ [y 7→ z] ∈ Y ⇀ Z the replacement of the binding from y to z in
Γ . We note by [] a partial function with an empty domain, and by [y 7→ z] the
partial function which binds only y to z (i.e. [y 7→ z] = [][y 7→ z]). Finally, we
note by unbind (y, Γ ) the restriction of Γ where y is removed from dom(Γ ). We
represent anonymous functions and partial functions using λ-calculus notation.

Syntax The template language, whose syntax is given in Figure 3, manipulates a
tree-structured data as its input, and values are referred by paths in that tree. A
path p ∈ P is either a variable x ∈ X, or access to a field f ∈ F of a record. A
template is decomposed into instructions i ∈ I. An instruction is either a fixed
word (reproduced as is), a replacement (replaced by the printed representation
of a value in a database), a concatenation of two instructions, a conditional, a
loop, or a function call. For the sake of simplicity the functions here only take
one argument, and we omit the syntax for the definition of functions, which is
standard; in particular, recursive calls are allowed.

Databases A database d ∈ D is a tree defined inductively as either a scalar of
type t, a record from field names to databases, or a finite sequence of databases.

D , Ds ∪ Dr ∪ D∗ Ds ,
⋃
t∈T

Dt Dr , F ⇀ D D∗ , Seq(D)

Scalar types must include integer and boolean types. As we focus on source-code
generation, our practical examples also use floating point numbers, symbols
(sequence of alphanumeric letters), and quoted strings (delimited by "").

Environments An environment Γ ∈ E = X ⇀ D is a mapping from variables to
databases. For instance, the mapping in the middle of Figure 2 is an environment,
mapping the variables first and seq to databases; first is a scalar (a symbol), and
seq is a sequence of 3 records, each containing only scalar values.
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fixed
LwM(Γ ) = w

replace
showt(Γ [p]) = w

L〈= p:t 〉M(Γ ) = w

concat
LiM(Γ ) = u LjM(Γ ) = v

Li jM(Γ ) = u · v

if-true
Γ [p] = true LiM(Γ ) = w

L〈if p〉 i 〈else〉 j 〈end〉M(Γ ) = w

if-false
Γ [p] = false LjM(Γ ) = w

L〈if p〉 i 〈else〉 j 〈end〉M(Γ ) = w

apply
i = ∆(φ) LiM(Γ [x 7→ Γ [p]]) = w

L〈apply φ with x = p〉M(Γ ) = w

for
Γ [p] = d1:: . . . ::dn ∀k ∈ 1..n : LiM(Γ [x 7→ dk]) = wk

L〈for x in p〉 i 〈end〉M(Γ ) = w1 · . . . · wn

Fig. 4. Big-step operational semantics for rtl.

We extend our notation for variable access in environment, and field access
in databases, to handle paths:
Γ [p.f ] , Γ [p][f ] Γ [p.f 7→ v] , Γ [p 7→ Γ [p][f 7→ v]] [p.f 7→ v] , [p 7→ [f 7→ v]]

Functions on scalars For every scalar type t ∈ T, we suppose that there exists
an injective function show t ∈ Dt → W to convert the value into a string, and a
partial function readt ∈ W ⇀ Dt that does the reverse, i.e. their composition is
the identity: ∀s ∈ Dt : read t(show t(s)) = s. Note that readt may fail (e.g. when
attemptying to parse "foo" as a number).

Forward semantics We now give the normal (forward) semantics for our template
language (Figure 4), in the big-step structural operational style of [22].

L·M is a partial function that takes a template instruction i ∈ I and an
environment Γ ∈ E, and either produces a word, or fails (when the template tries
to access a path not bound in the environment Γ ). The evaluation is deterministic.

The evaluation goes as follows: fixed words are copied as is (fixed). Re-
placements are done using the value taken from the corresponding field in the
database (replace). Concatenated instructions produce a concatenated word
(concat). Conditionals depend on the boolean value of a path in the database
(if-true and if-false); templates which use as a condition a value which is not
a boolean fail with an error. The for instruction iterates over a sequence, binds
each element of the sequence to a variable, evaluates the child instruction with
this new environment, and concatenates the results (for). The apply instruc-
tion (apply) introduces a new binding which is used in the called function; we
assume the existence of a global mapping of definitions ∆ from function names
to instructions created by parsing the function definitions (the “main” template
is attached to the name main).

In general the evaluation will start with one or several variables bound, which
are the "roots" of the database.

4 Semantics for reversing template

We define the reverse template problem for i and w as finding the set of all the
environments that can produce a word w given a template i. Formally:
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Definition 1 (Backward interpretation function). Given a template i, the
backward interpretation function JiK(·) is defined as follows:

JiK(·) : W→ P(E) JiK(w) , {Γ ∈ E : LiM(Γ ) = w}

We derive a sound algorithm for the reverse template problem in 3 steps:

1. we observe that we can reverse the forward evaluation as a parsing algorithm,
but this requires fixing an issue on some for template instructions;

2. we define a denotational (i.e. compositional) semantics for the backward
interpretation function, that we modify to work around the parsing issue;

3. we define abstract domains that provide finite, computer-manipulable rep-
resentations of infinite sets of environments, and we use them to derive an
algorithm that computes a representation of a superset of JiK(w).

This section describes the steps 1. and 2., while Section 5 presents step 3.

4.1 Parsing as natural deduction

To compute JiK(·), a key observation is that the operational semantics given in
Fig 4 can be read backwards, as a proof search that parses the text according to
the template, and use this to retrieve a Γ (this makes use of the correspondance
between parse trees and deduction trees observed by Shieber et al. [46]).

This suggests an algorithm that would first use a parser to enumerate all
the suitable deduction/parse trees, and solve the associated constraints for each
tree (it suffices to translate the template into a context-free grammar that over-
approximates the set of words that a template can generate, see Appendix A.1
for details).

Unfortunately, this algorithm fails when the number of parse trees is infinite,
which can happen in our language. In Appendix A.1 we show that this happens
when the context-free grammar corresponding to the template is cyclic, i.e. a
non-terminal can derive into itself without outputing anything else. This can
happen notably when a function φ may recursively call itself without outputing
anything after and before the recursive call, e.g. when φ is defined as follows:
“〈if p.cond〉 〈= p.data:int 〉 〈else〉 〈apply φ with p = p.next〉 〈end〉”. Note that
non-cyclic recursive calls to template functions (e.g. if φ is defined as
“〈if p.cond〉 〈= p.data:int 〉 〈else〉 (〈apply φ with p = p.next〉) 〈end〉”) can be
handled as in this case, there would still be a finite number of parse trees;
further, we explain how to extend our technique to handle cyclic recursive calls
to templates in Section 8.4). We never encountered such cyclic recursive calls in
our real examples (and it is easy to add text in the output to make the recursive
call non-cyclic), so in the following we assume that the template has no cyclic
recursive calls.

On the contrary, the following pattern is very common. Consider, in Fig 4, the
for rule: if the i instruction can produce the empty word ε, then this rule may
have an arbitrary large number of antecedents. For instance, in the template:

〈for n in nums〉 〈if n.odd〉 〈= n.id:int 〉 〈else〉 〈end〉; 〈end〉
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For-alt
d1:: . . . ::dn subsequence of Γ [p]

∀k ∈ 1..n : wk 6= ε ∀d : d ∈ Γ [p] ∧ d /∈ d1:: . . . ::dn ⇒ LiM(Γ [x 7→ d]) = ε
∀k ∈ 1..n : LiM(Γ [x 7→ dk]) = wk

L〈for x in p〉 i 〈end〉M(Γ ) = w1 · . . . · wn

Fig. 5. Alternative rule for the for instruction

applied to the string "11;17;", there can be arbitrarily many n in nums which
are not odd , each of them corresponding to a different parse tree. As in this case
the number of parse trees is infinite, the proof search cannot terminate.

To work around this problem, we provide an alternative for-alt rule (Fig 5,
where subsequences are not necessarily consecutive). This alternative rule just
separates the elements in the sequence that produce an empty string from those
that do not, and it is thus easy to prove that both rules are equivalent.

Theorem 1. The For and For-alt rules are equivalent.

Using this new rule, the children of a for node in a parse tree is now a finite
sequence of subtrees each corresponding to a non-empty word, instead of an
arbitrary long sequence of subtrees corresponding to either empty or non-empty
words (which could thus not be enumerated). The combination of the For-alt
rule and restriction on non-cyclic recursive calls makes sure that the number of
possible parse trees for any given word is finite, and can thus be enumerated (see
Appendix A.1 for a proof).

4.2 A backward denotational semantics

Using Definition 1, we can easily prove that the backward interpretation function
JK() has the properties given in Fig. 6. But these equations can also act as a
denotational semantics for JK(), i.e. they define the behaviour of JK() constructively.
To summarize, outputing a fixed word is possible only when the word matches
its output; outputing a path constrains this path in the environment; when two
templates are concatenated, the environment must fullfill the constraints of both
templates; in conditionals the environments must fulfill one of the two cases;
as applying a template creates a binding from the formal to actual argument,
the reverse evaluation has to perform the opposite operation of unbinding the
constraints; finally, handling for loops is a combination between concatenation
of a finite sequence and unbinding of the loop iterator.

As we explained in Section 4.1, this semantics cannot be used “as-is” as the
basis for an algorithm, because the for rule can perform an infinite number
of decompositions. To solve this problem, we have to ignore the elements in
sequences that produce an empty string. To do this, we first define unseq :

unseq : X× P× Seq(E)→ P(E)
unseq(x, p, Γ1:: . . . ::Γn) , {Γ : Γ = unbind (x, Γ1) = . . . = unbind (x, Γn)

∧ Γ1[x]:: . . . ::Γn[x] subsequence of Γ [p] }
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JvK(w) =
{

E if v = w
∅ otherwise

J〈= p:t 〉K(w) = {Γ ∈ E : Γ [p] = read t(u)}

Ji jK(w) =
⋃

u·v=w

JiK(u) ∩ JjK(v)

J〈if p〉 i 〈else〉 j 〈end〉K(w) = {Γ ∈ JiK(w) : Γ [p]}
∪ {Γ ∈ JjK(w) : ¬Γ [p]}

J〈apply f with x = p〉K(w) = {unbind (x, Γ ) : Γ ∈ J∆(f)K(w)
∧Γ [p] = Γ [x]}

J〈for x in p〉 i 〈end〉K(w) =⋃
n∈N

w1·w2···wn=u

{ Γ : ∃(Γ1, . . . , Γn) ∈ JiK(w1)× . . .× JiK(wn),
Γ [p] = Γ1[x] :: . . . :: Γn[x]
∧unbind (x, Γ1) = . . . = unbind (x, Γn) }

Fig. 6. A denotational semantics for reversing templates.

The idea is that unseq takes a variable x, a path p, and a sequence of environments
Γ1:: . . . ::Γn where x is bound, and it retrieves all the Γ where Γ1:: . . . ::Γn can
correspond to a subsequence of the environments that are created in the forward
evaluation of a for x in p instruction applied to an environment Γ .

We also define emptyseq as follows:

emptyseq : I× X× P× Seq(E)→ P(E)
emptyseq(i, x, p, Γ1:: . . . ::Γn) , {Γ : ∀d ∈ Γ [p] : d 6= Γ1[x] ∧ . . . ∧ d 6= Γn[x]

⇔ Γ [x 7→ d] ∈ JiK(ε) }

Intuitively, the function emptyseq constrains the databases d in Γ [p], that produce
an empty string, to be distinct from those that are in the subsequence Γ1:: . . . ::Γn.
Finally, we can modify the rule for for templates using these definitions:

J〈for x in p〉 i 〈end〉K(w) =
⋃
n∈N

w1·w2···wn=u
∀wi:wi 6=ε

⋃
Γ1∈JiK(w1)

...
Γn∈JiK(wn)

emptyseq(i, x, p, Γ1:: . . . ::Γn)
∩ unseq(x, p, Γ1:: . . . ::Γn)

This denotational semantics for reverse template, with the above modified rule
for for templates, is the basis for our algorithm for sound reversal of templates,
provided in the next section.

5 Sound reversal of templates

In Section 4 we developed a denotational semantics for reversing templates that
is compositional and requires only a finite number of parse trees (for a given
text). This semantics is not computable because it manipulates infinite sets of
databases and environments: for instance, every environment in E can render the
text "foo" from the template "foo", and we cannot enumerate E.
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A similar problem exists in the setting of sound static analysis of programs,
that relies on a program semantics which is not computable due to the handling
of infinite (or very large) sets of states S. The solution to this problem is abstract
interpretation [8] : the program semantics is approximated by a computation
over an abstract domain S], which is a computer-representable lattice, such that
S and S] are (typically) related by a Galois connection. Abstract interpretation
is a sound method, i.e. it is guaranteed to compute a sound over-approximation
of the set of all reachable states of the program; here we propose to use this
method to soundly over-approximate the set of all the environments that can
produce a given text with a given template.

We first present our abstract databases and abstract environments, respectively
used to represent sets of concrete databases and environments; then our abstract
backward semantics, which allows computing a sound overapproximation of the
backward denotational semantics JK(). We give the concretisation function γ that
provides the formal meaning of the abstract domain by relating abstract elements
to the set of concrete elements that it represents, and soundness theorems of all the
main operations (we generally omit the proof, as the proof method is standard).

5.1 Abstract databases

Intuitively, we can see our abstract domains as representing databases as a collection
of constraints, such that they describe the set of databases that obey these
constraints. As there are three different kinds of databases (scalars, records, and
sequences), we need three different kinds of constraints to represent them. The
domains are presented formally in Figure 7. We define an abstract database d] ∈ D]

to be either a scalar value s ∈ Ds, an abstract record d]r ∈ D]r mapping fields
to abstract databases, an abstract sequence d]∗ ∈ D]∗, or ⊥, which represents an
unsatisfiable constraint. Its concretisation is defined recursively as representing
either a single scalar, the empty set, or a set of abstract databases or abstract
sequences.

Remark 1. Our abstract elements cannot represent a set of databases that would
contain both a scalar and a record. Thus, the abstraction function α cannot be
defined on our domains, and we use a γ-only style of abstract interpretation [10].
Representing such a heterogeneous set is not needed, as abstract databases do
not feature a join operator (instead, we perform a disjunctive completion [9] by
powerset completion [2, 14] on abstract environments, see Section 5.2).

An abstract record d]r ∈ D]r is a partial function from fields to abstract databases.
Intuitively, each field in the abstract record constrains the corresponding field in
the concrete records (fields that are not in the abstract record are unconstrained).

Example 1. Let d]r = [”a” 7→ [”b” 7→ 1]]. Then:
[”a” 7→ 3] /∈ γD]

r
(d]r) [”d” 7→ 8; ”a” 7→ [”b” 7→ 1; ”c” 7→ 3]] ∈ γD]

r
(d]r)

An abstract sequence is defined as a set of sequences of abstract databases.
Its intuitive meaning is that the sequences in the set constrains the possible
subsequences of the concrete elements.
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Abstract database D] = Ds ∪ D]r ∪ D]∗ ∪ {⊥}
Abstract record D]r = F ⇀ D]

Abstract sequence D]∗ = P(Seq(D]))

γD] : D] → P(D) γD](d
]) =


{d]} if d] ∈ Ds
γ

D]
r
(d]) if d] ∈ D]r

γ
D]
∗
(d]) if d] ∈ D]∗

∅ if d] = ⊥

γ
D]
r
: D]r → P(Dr) γ

D]
r
(d]r) = {r ∈ F ⇀ D : ∀f ∈ dom(d]r), r[f ] ∈ γD](d

]
r[f ])}

γ
D]
∗
: D]∗ → P(Seq(D)) γ

D]
∗
(d]∗) = { s ∈ Seq(D) : ∀d]1:: . . . ::d]n ∈ d

]
∗ :

d1:: . . . ::dn subsequence of s
and d1 ∈ d]1 ∧ . . . ∧ dn ∈ d]n }

a] uD] b
] =


a] if a] = b]

a] u
D]
r
b] if a] ∈ D]r ∧ b] ∈ D]r

a] u
D]
∗
b] if a] ∈ D]∗ ∧ b] ∈ D]∗

⊥ otherwise

a]r uD]
r
b]r = λf.


a]r[f ] if f ∈ dom(a]r) ∧ f /∈ dom(b]r)
b]r[f ] if f /∈ dom(a]r) ∧ f ∈ dom(b]r)

a]r[f ] uD] b]r[f ]
if f ∈ dom(a]r)
∧ f ∈ dom(b]r)

a]∗ uD]
∗
b]∗ = a]∗ ∪ b]∗

Fig. 7. Abstract databases: definitions, concretisations, and abstract intersections.

Intuitively, this set of constraints appears because we do not have another
mean to merge constraints over different subsequences of the same sequence. This
problem, which is similar to the alignment problem in bidirectional languages
[4, 24] is studied more in depth in Section 7.

Example 2. Let d]∗ = {1::2, 1::3}. Then:

{1::2::4::3, 1::5::3::2, 2::1::2::3} ⊆ γD]
∗
(d]∗) {2::1::3, 1::3} ∩ γD]

∗
(d]∗) = {}

As shown by this example, some intuitively important relations on the sequences
(like the fact that the length of the sequence is known), are not captured by our
abstraction; this is explored in Section 6.3.

The only operator that we need over abstract databases is abstract intersection,
defined in Fig 7, and whose meaning is given by the following theorem:
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Theorem 2 (Soundness and exactness of abstract intersection).
Abstract intersection operators uD] , uD]

r
, and uD]

∗
are sound and exact:

∀(a], b]) ∈ D] : γD](a] uD] b]) = γD](a]) ∩ γD](b])

∀(a]r, b]r) ∈ D]r : γD]
r
(a]r uD]

r
b]r) = γD]

r
(a]r) ∩ γD]

r
(b]r)

∀(a]∗, b]∗) ∈ D]∗ : γD]
∗
(a]∗ uD]

∗
b]∗) = γD]

∗
(a]∗) ∩ γD]

∗
(b]∗)

5.2 Abstract environments

Abstract environment E] = X ⇀ D]

γE] : E] → P(E) γE](Γ
]) = {Γ ∈ X ⇀ D : ∀x ∈ dom(Γ ]), Γ [x] ∈ γD](Γ

][x])}

unseq](x, p, Γ ]1 :: . . . :: Γ ]n) =

(
l

E]

k∈1..n

unbind (x, Γ ]k)

)
uE] [p 7→ {Γ ]1 [x] :: . . . :: Γ

]
n[x]}]

Γ ]1 uE] Γ
]
2 = λx.


Γ ]1 [x] if x ∈ dom(Γ ]1 ) ∧ x /∈ dom(Γ ]2 )

Γ ]2 [x] if x /∈ dom(Γ ]1 ) ∧ x ∈ dom(Γ ]2 )

Γ ]1 [x] uD] Γ
]
2 [x]

ifx ∈ dom(Γ ]1 )

∧x ∈ dom(Γ ]2 )

Fig. 8. The abstract environment E] abstract domain.

Abstract environments E]∨ = P(E])

γ
E]
∨
: E]∨ → P(E) γ

E]
∨
(e]) =

⋃
Γ ]∈ e]

γE](Γ
])

>
E]
∨
= {[]} ⊥

E]
∨
= {} e]1 tE]

∨
e]2 = e]1 ∪ e

]
2

e]1 uE]
∨
e]2 = {Γ ]1 u

]

E] Γ
]
2 : Γ ]1 ∈ γE]

∨
(e]1) ∧ Γ

]
2 ∈ γE]

∨
(e]2) }

Fig. 9. The domain of abstract environments E]∨ is the powerset completion of E].

Similarly to abstract databases, we define abstract environments to represent
a set of environments. An abstract environment Γ ] ∈ E] is a mapping from
variables to abstract databases. It is very similar to abstract records (except
that it is indexed by variables instead of fields); in particular, the concretisation
γE] and abstract intersection uE] are very similar to the concretisation γD]

r
and

intersection uD]
r
of abstract databases.
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Theorem 3. uE] is sound and exact:

∀(Γ ]a, Γ
]
b ) ∈ E] : γE](Γ ]a uE] Γ ]b ) = γE](Γ ]a) ∩ γE](Γ ]b )

We define another transfer function on abstract environments, unseq], that
is used to revert a 〈for x in p〉 〈end〉 instruction: it receives a variable x ∈ X, a
path p ∈ P, and a sequence of abstract environments in which x is bound; and
use this to constrain the path p. Specifically:

Theorem 4 (Soundness and exactness of unseq]).
Let x ∈ X, p ∈ P, and Γ ]1 :: . . . ::Γ

]
n ∈ Seq(E]). Then:

γE](unseq](x, p, Γ ]1 :: . . . ::Γ
]
n)) =

⋃
Γ1∈Γ ]

1 , ... , Γn∈Γ ]
n

unseq(x, p, Γ1:: . . . ::Γn)

We define the lattice of abstract environments E]∨ to be the standard powerset
completion [2, 9, 14] of E].

5.3 Abstract semantics

Equipped with these abstract domains, we can now propose an algorithm for re-
versing templates (Fig 10). This algorithm derives from the backward denotational
semantics of Section 4.2, using the denotational style of abstract interpretations
[44]. This allows, using the soundness theorems on the abstract domains, to prove
the soundness of our main algorithm:

Theorem 5 (Soundness of abstract semantics). Given any template i and
word w:

γE]
∨
(JiK](w)) ⊇ JiK(w)

Thanks to the compositional nature of both the abstract and backward denota-
tional semantics, the proof is easily done by induction. It is worth noting that
the part where we lose exactness (replacing equality by ⊆) is the abstraction of
for instructions, as we do not retain the information expressed by emptyseq in the
backward semantics.

6 Precision and exactness

We now have a sound algorithm that retrieves a superset of the input environments
that can produce a template for a given text.

As shown in Section 2, retrieving too many inputs can later lead to false
alarms when trying to validate the inputs against requirements. Thus, we want
to study whether this set can be sufficiently precise to be of practical use, and
when would the algorithm have optimal precision.

13



JiK](·) : W→ E]∨ JvK](w) =

{
>

E]
∨

if v = w

⊥
E]
∨

otherwise

J〈= p:t 〉K](w) = {[p 7→ readt(u)]} Ji jK](w) =
⊔

E]
∨

u·v=w

JiK](u) u
E]
∨

JjK](w)

J〈if p〉 i 〈else〉 j 〈end〉K](w) = JiK](w) u
E]
∨
{[p 7→ true]} t

E]
∨

JjK](w) u
E]
∨
{[p 7→ false]}

J〈apply f with x = p〉K](w) = { unbind (x, Γ ][p 7→ Γ ][p] uD] Γ
][x]]) : Γ ] ∈ J∆(f)K](w) }

J〈for x in p〉 i 〈end〉K](w) =
⊔

E]
∨

n∈N
w1·w2···wn=u
∀wi:wi 6=ε

{ unseq](x, p, Γ ]1 :: . . . :: Γ ]n) :

Γ ]1 ∈ JiK](w1) ∧ . . . ∧ Γ ]n ∈ JiK](wn) }

Fig. 10. A sound algorithm for reversing templates.

6.1 Optimal precision

Intuitively, the result of an algorithm for reversing templates would be optimally
precise if it returned a single environment, which would be the one used to
generate the text. Unfortunately, this is impossible:

Theorem 6. If some environment Γ exists that generates an output w from a
template instruction i, then JiK(w) is an infinite set.

Proof. We can create arbitrarily many suitable inputs by adding arbitrary bind-
ings to Γ .

Intuitively, all the bindings that are not used during the evaluation of the
template cannot be recovered by the reverse processing, and can have arbitrary
values. We thus adopt a more restricted definition of optimal precision by consid-
ering only the values bound to paths that are used in the forward evaluation. We
first define an order relation 4 on databases such that da 4 db means that da
has fewer bindings than db:

Definition 2. We define a relation 4∈ D × D on databases as the smallest
relation satisfying:

– If d ∈ Ds is a scalar, then d 4 d.
– If da, db ∈ Dr are records, dom(da) ⊆ dom(db), and ∀f ∈ dom(da) : da(f) 4
db(f), then da 4 db.

– If da, db ∈ D∗ are sequences and there exists a subsequence d′b of db such that
da and d′b have the same length n, and ∀k : 0 ≤ k ≤ (n− 1)⇒ da(k) 4 d′b(k),
then da 4 db.

The definition is naturally extended to environments by considering that environ-
ments are similar to records (and are the same if field names and variable names
are the same set).

Theorem 7. 4 is a partial order.
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Example 3. [”a” 7→ [”b” 7→ 1::3]] 4 [”d” 7→ 8; ”a” 7→ [”b” 7→ 1::2::3::4; ”c” 7→ 3]]

This relation allows to "minimize" a database to consider only the parts that are
relevant for a given template:

Theorem 8. Let i ∈ I be a template instruction, w ∈ W be a word, Γ ∈ E be an
environment, such that LiM(Γ ) = w. The set {Γ ′ | Γ ′ 4 Γ ∧ LiM(Γ ′) = w} has a
minimum, i.e. a unique minimal element. If this minimum is Γ , we say that Γ
is minimal for i.

Proof sketch. One can collect all the paths that are used during the evaluation of
Γ by i, which we call the footprint (see Appendix for a formal definition) All the
elements corresponding to a path in the footprint must be preserved, otherwise
the forward evaluation fails. On the contrary, all the elements that are not in the
footprint can be removed without affecting the evaluation. The minimal database
is the one that only contains the elements in the footprint.

Thanks to this theorem, we can now partition JiK(w) into equivalent classes,
where Γ and Γ ′ are equivalent if they can be minimized to the same Γ ′′; these
minimal elements are the representative of the equivalence class. In other word,
we can now consider only minimal elements. This allows to define precision as
follows:

Definition 3. Template reversal for a template instruction i and word w is
precise if JiK(w) has only one equivalence class; or equivalently, if only one
environment Γ exists such that Γ is minimal for i and LiM(Γ ) = w.

This definition thus means that there is a unique preimage Γ of w through i,
up to minimality. This notion is important for our motivating example: if we
can recover this Γ , it means that we have retrieved all the relevant parts of the
database that have produced the output.

Remark 2. Another immediate application of program inversion is bidirectional
programming [29]: if we first evaluate LiM(Γ ) = w, that w is manually modified,
and JiK(w′) returns a single minimal Γ ′. Then, using the principle of constant
complementation [3, 17, 29], i.e. adding to Γ ′ the values of Γ that are not bound
to any path in Γ ′, we can update the database to soundly reflect the edits of
w. If the template reversal for i and w′ is not precise, then we would have to
disambiguate the solution, either asking the user for help, or using hints in the
template language.

6.2 Inherent imprecisions

There are only two reasons why the backward evaluation of a template instruction
i for an output w is imprecise (i.e. the computed abstract environments do not
form a single equivalence class):

– Either JiK(w) is imprecise, and the imprecision comes from the template or
particular output: there are several minimal preimages of w for the template i.
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– Or JiK(w) is precise, but the imprecision comes from the fact that JiK](w) is
not exact [41], meaning that the abstraction introduces further imprecisions.

In this section we study the first source of imprecision, that we call inherent
imprecisions. An interesting result if template reversal is imprecise for a template
i and output w, this means that w is syntactically ambiguous for the grammar
corresponding to the template i. More precisely:

Theorem 9. If JiK(w) is imprecise, there exists two environments Γ1 and Γ2 in
JiK(w) such that the forward evaluation of Γ1 and Γ2 (with the original for rule)
produce deduction/parse trees with different shapes.

Proof sketch. Suppose that we have Γ1 and Γ2 that belong to JiK(w), are minimal
and distinct, and that their evaluation corresponds to deduction trees with
the same shape (i.e. the evaluation takes the same branch on conditional tests,
and sequences have the same number of elements). The sequence of leaves in
a deduction tree is equivalent to a sequence of either fixed strings or calls to
showt(Γ [p]) for some p, and both sequence must be equal to w. If Γ1 and Γ2 have
the same parse tree, then this sequence is the same, which means that every Γ [p]
in the sequence must have the same printed representation. This means that Γ1

and Γ2 have equal values for every p in their footprint—which contradicts the
fact that Γ1 and Γ2 are minimal and distinct.

This theorem is useful, because detecting parsing ambiguity at runtime is relatively
easy – for instance the algorithm of JiK](w), the number of parse trees is the
cardinal of the element in E]∨ which is returned (without counting ⊥E] elements).

Another application of this theorem is that we can enumerate the causes of
imprecision in the semantics; it can help the template developer to change the
template to fix any ambiguity (e.g. by adding fixed text, e.g. in comments when
the output is source code). Imprecisions are due to:

– Ambiguities in concatenation, e.g.
J〈= x:int 〉 〈= y:int 〉K(123) = { [x 7→ 1, y 7→ 23], [x 7→ 12, y 7→ 3]}

– Ambiguities in loops, e.g.
J〈for x in s〉 〈= x:int 〉 〈end〉K(12) = {[s 7→ 1::2], [s 7→ 12]}

– Ambiguities in conditionals, e.g.
J〈if c〉 0 〈else〉 〈= x:int 〉 〈end〉K(0) = { [c 7→ true], [c 7→ false, x 7→ 0]}

– Loops containing an empty production, e.g.
J〈for x in s〉 〈if x.c〉 〈= x.id:int 〉 〈else〉 〈end〉 〈end〉K(7) =
. { [s 7→ [c 7→ false, id 7→ 7]],

[s 7→ [c 7→ true]::[c 7→ false, id 7→ 7]],
[s 7→ [c 7→ true]::[c 7→ true]::[c 7→ false, id 7→ 7]], . . .}

In concatenation and loops, the ambiguity can often be fixed by inserting fixed
string that acts as a separator between two replacements. Note that removal
of ambiguity is the reason why, in the language, our replacements take a type
argument. Indeed, if, like in many template languages, the replacement could be
arbitrary, then the parsing of loop sequences would become highly ambiguous—as
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it would be possible for separators to be part of the replacement text. For instance,
the ambiguity of the following backward evaluation is probably not expected:

J〈for x in s〉 〈= x:any 〉; 〈end〉K(”11; 22; ”) = { [s 7→ ”11”::”22”], [s 7→ ”11; 22”]}

For conditionals, the template should be written such that the languages
corresponding to each branch of a conditional do not overlap. One easy way to
do it, if the template produces text for a language that allows comments, is to
add different comments in the different branches of the condition:

J〈if c〉 /∗c∗/0 〈else〉 /∗!c∗/〈= x:int 〉 〈end〉K(”/∗!c∗/0”) = {[c 7→ false;x 7→ 0]}

6.3 Imprecision coming from the abstraction

We now study the second source of imprecision, i.e. imprecisions coming from
the abstraction. As we have seen, many of our transfer functions, like abstract
intersection, are exact. A transfer function f ] is an exact [41] (also called forward-
complete [19]) approximation of a function f if f ◦ γ = γ ◦ f ] (this extends to
binary functions).

If S is a set, and S] is such that γ(S]) = S, then γ(f ](S])) = f(S). This
means that if you only use exact transfer functions in the algorithm for reversing
templates (Figure 10), then the result of the algorithm exactly represents the set
of all the inputs of the templates: the algorithm introduces no imprecision.

An important source of inexactness is the join operator. For instance, a join
operator on our abstract environment abstract domain E], would introduce a
catastrophic loss of precision, as when joining two environments Γ ]1 and Γ ]2 , any
information known about a variable x bound in only one of the Γ would be lost
in the result. This is the reason why we introduced a top-level powerset abstract
domain E]∨, which allows performing unions without introducing imprecisions.

There is still one operation in our algorithm which is inexact, which is the
handling of sequences. In Section 4.2, we introduced the emptyseq function to
characterize elements in the sequence that produce an empty word. But this
information is completely lost in the abstract semantics of Figure 10.

A simple way to fully recover part of this information, which is very useful
in practice, is to use a two-element lattice {complete, incomplete} with complete v
incomplete, where complete means that the abstract element corresponds to the
whole sequence, and not to only a subsequence, of the concrete sequence.

We thus change our definition of abstract sequences such that

D]∗ , {complete, incomplete} × P(Seq(D]))

and change the definition of γD]
∗
in Figure 7 such that "subsequence of" is replaced

by "is equal to" when the abstract sequence is complete. Finally, in the algorithm
computing J〈for x in p〉 i 〈end〉K](w) (Figure 10), we should set the sequence
type to complete if the interpretation of the template i cannot produce the empty
word, i.e. if JiK](ε) = ⊥.

With these additions, our abstract algorithm is now exact on the example
of Figure 2, where every for instruction cannot produce empty words for any
element. We can actually prove this theorem:
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ρD] : D] → D] ρD](d
]) =


d] if d] ∈ Ds
ρ

D]
r
(d]) if d] ∈ D]r

ρ
D]
∗
(d]) if d] ∈ D]∗

ρ
D]
r
: D]r → D]r ρ

D]
r
(d]r) =

{
⊥ if ∃f ∈ dom(d]r) : ρ[d

]
r[f ]] = ⊥

λf.ρ
D]
r
[d]r[f ]] otherwise

ρE] : E] → E] ρE](Γ
]) =

{
⊥ if ∃x ∈ dom(Γ ]) : ρ

D]
r
[Γ ][x]] = ⊥

λx.ρ[Γ ][x]] otherwise

ρ
E]
∨
: E]∨ → E]∨ ρ

E]
∨
(e]) = {ρE](Γ

]) : Γ ] ∈ e] ∧ ρE](Γ
]) 6= ⊥}

Fig. 11. Some reduction operators for our abstract domains.

Theorem 10. Let e] = JiK](w). If e] does not contain any incomplete abstract
sequences, then the algorithm is exact: γE]

∨
(e]) = JiK(w)

Combining this theorem with our analysis on inherent imprecisions yields:

Corollary 1. Let e] = JiK](w). If e] is a singleton and does not contain an
incomplete abstract sequence, then JiK](w) is precise.

These theorems allow testing if the result of algorithm of Figure 10 is precise,
based only the structure of abstract elements.

Remark 3. If the representation of complete abstract sequences is maximally pre-
cise, this is not the case for incomplete ones. More information could be retained in
this case on the elements in the sequence that produce the empty word. This also
requires updating operators like the intersection operator, as forgetting about
this new information would introduce imprecision.

7 Reduction for constraint propagation

Abstract interpretation provides a mean to propagate constraints using an opera-
tor called reduction.

Definition 4. Given an abstract domain D], a partial reduction operator ρ ∈
D] → D] is a function such that:

1. ∀d] ∈ D] : γ(ρ(d])) = γ(d]) (reduction does not change the concretisation)
2. ∀d] ∈ D] : ρ(d]) v] d] (reduction produces a smaller, simpler abstraction)

Note that we did not need to define an ordering v] on our abstract values up to
now so the second condition is less important; a suitable ordering can be defined
as d] v] d′] ⇔ ρ(d]) = ρ(d] u d′]).
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Removal of ⊥ There are several places where this operator is useful in our
analysis. Figure 11 presents operators for all domains except abstract sequences,
that we detail shortly after. The main goal here is to propagate the reductions
across all the domains, to remove ⊥ elements. Indeed, the abstract intersection
(u) operators creates ⊥ elements when the constraints are irreconcilable; this is
used in particular, to disambiguate some cases of ambiguous parsing.

Removing these ⊥ elements is important mainly for performance reasons.
Indeed, the uE]

∨
operator has quadratic complexity due to the powerset completion,

so removing useless elements early allows to perform fewer computations. Thus,
reductions should be performed just after intersections (in practice, it is sometimes
easier to interleave the reduction step directly in the definition of the abstract
intersection operations).

Reduction of complete sequences Consider the following example, where a sequence
appears twice in the template:

s
A:〈for c in seq〉 〈= c.a. : int 〉; 〈end〉
B:〈for c in seq〉 〈= c.b. : int 〉; 〈end〉

{]
(A:1; 2; B:3; 4;) =

[seq 7→ {(complete, [a 7→ 1]::[a 7→ 2]), (complete, [b 7→ 3]::[b 7→ 4])}]

Following our addition from Section 6.3, we can now find out that we retrieved
the complete sequence. But the result is not quite the one we would like: what
the domain says here is that it saw two complete sequences, but it is unable
to merge the elements of the sequence together. The problem here is not a
problem of precision, as the concretisation of this domain is optimally precise;
the problem comes from the lack of reduction, that the following operator solves.
By simplicity this operator is defined ρD]

∗
on pairs of two elements; the actual

operator recursively applies it to every pair until the resulting set can no longer
be reduced.

ρD]
∗
: D]∗ → D]∗

ρD]
∗
({(complete, d1:: . . . ::dn), (_, d′1:: . . . ::d

′
n)}) = {(complete, d1 uD] d′1:: . . . ::dn uD] d′n)}

ρD]
∗
({(_, d1:: . . . ::dn), (complete, d′1:: . . . ::d

′
n)}) = {(complete, d1 uD] d′1:: . . . ::dn uD] d′n)}

ρD]
∗
({d∗, d′∗}) = {d∗, d′∗} otherwise

This operator merges together complete sequences when feasible, merging
elements based on their positions. Note that it can also merge a complete
sequence with a maybe-incomplete one if they have the same number of elements
(meaning that the maybe-incomplete sequence is actually complete). Applying
this reduction operator on the example above yields the expected result:

ρD]
∗
([seq 7→ {(complete, [a 7→ 1]::[a 7→ 2]), (complete, [b 7→ 3]::[b 7→ 4])}]) =[

seq 7→
{(

complete,
[
a 7→ 1
b 7→ 3

]
::

[
a 7→ 2
b 7→ 4

])}]
Reduction of partial sequences Without any additional information, we cannot
learn anything about two partial sequences, because we don’t know how to
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combine different elements together. However, provided that we could uniquely
identify elements in the sequence (e.g. using a unique field, or position in the
sequence), we could also reduce partial sequences by merging them into a DAG
representing the partial order in which elements have been seen.

Such an extension has similarities with the key-based list alignment strategy
in bidirectional programming languages [4, 24] that allows to match elements
between the source and the view when the list was modified using some key. In
general, the strategies used in bidirectional programming to reconcile elements in
sequences between the source and the updated view, can also be useful to merge
information about sequences in our template inversion problem.

8 Implementations and evaluation

We have implemented this technique on a custom template language called Kit.
Kit is a project developed by a small business that develops tools and kernels for
safety-critical real-time systems, used in automotive, aerospace & defense, and
industrial automation industries. They have developed a custom source-to-source
compiler that produces C files based on high-level descriptions of the timing
behaviour of their systems. The compiler proceeds in two passes; first it generates
an XML database that contains all the low-level parameters, such as the size
of the communication buffers of the applications, the authorized inter-process
communication between the tasks, or the configuration options used to compile
the kernel and the applications. The kit template engine then process template
files using this database to generate C source code containing the application
parameters, that will be compiled and linked with the application and kernel
code to create an executable describing the whole system.

We proposed template inversion as a possible solution to their problem of
independent validation of their generated source code (note that the templates
are shared between the generator and validator, but this is not a problem because
the templates can be viewed as specifications of the format of the source code).
To test our solution, we were given kit templates and the corresponding output
for a sample application. We redeveloped a parser for the kit language, and a
kit reverse evaluator, in OCaml.

8.1 Extensions for a full-featured template language

The kit template language gradually evolved and includes numerous features
besides those described in our core language. These features are important for
practical usage of the template language. Most of these extensions could be
handled by transforming the full kit language into a "core kit" one:

– include directives were handled by inlining (transitively) the included file
into the main file;

– Comments are widely used in the kit files; we just remove them during the
lexical analysis of kit templates;
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– There are lexical variations around the instructions which allows adjusting
newlines between the source code and the kit code, also handled during the
lexical analysis of kit templates;

– There are assertions in the code, that are handled using constraints as
described below;

– There is a select instruction which allows querying for a single element in a
sequence. This was handled by updating the definition of path;

– The scalars were untyped, but we created a “catch-all” type consisting in int
+ symbol + strings + floats, that works in practice for this use-case.

– The template functions are defined in the kit language, and can have more
than one argument.

8.2 Arbitrary expressions

An interesting feature (commonly found in other template languages) is that
replacement instructions, and conditionals, can contain expressions instead of
simple paths. This is beneficial for code generation, as code generators can handle
more situations without having to change the database. Consider reversing this
HTML-producing template:

<tr>〈for c in seq〉
<td style="color:〈if c.temp < 0〉 blue 〈else〉 red 〈end〉;">〈= c.temp:float 〉</td>
〈end〉</tr>

applied to the text:

<tr><td style="color:blue";>−40</td><td style="color:red";>451</td></tr>

The need for such an expression could be replaced by a change in the input
database and a c.is_temp_negative test instead, but expressions remove this
need. To handle expressions, we simply add our abstract environments E] a set
of constraints that are bindings of the form expression 7→ value. Applied to the
above example, this results in:{

seq[0].temp < 0 7→ true,
seq[1].temp < 0 7→ false

}
, [seq 7→ (complete, [temp 7→ −40]::[temp 7→ 451])]

Updating the transfer functions to modify the constraints when bindings
change in apply and for instructions is fairly easy. Finally, we can change the
reduction operator to take constraints into account. One simple way to do that is
to substitute paths for their variable if their value is available; for instance, on the
above example, the values of seq[0].temp and seq[1].temp are known. This allows
to check if the constraint holds; if so, the constraint can be removed, otherwise
we can reduce the environment to ⊥. Thus, after reduction, our example becomes
just [seq 7→ (complete, [temp 7→ −40]::[temp 7→ 451])]. More complex strategies
could be used, e.g. we could try to see if there is a unique solution to the set of
constraints using an SMT solver. This strategy suffices for our use case, as we
can always add text in the template (as comments in the output text) to add the
values of all paths, so that all the constraints can be eliminated by the reduction
operator.
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8.3 Parsing

We have implemented two versions of our template reversing algorithm. In the
first one, we relied on dypgen [37], a GLR parser generator for OCaml. The
idea of this implementation was that a context-free grammar can be used as
an overapproximation of the language that can be produced by a template
instruction; semantic actions in the parser can then be used to drop the parse
trees that cannot be produced by the template (which corresponds to the case
where the backward evaluation of the template returns {}).

dypgen also implements a lexing pass, but it follows the longest match rule,
so using it can lead to missing parse trees. Thus, we used single characters as
tokens. The generated parser works well on simple examples, but unfortunately,
generating the parser for some simple constant texts take several minutes, for
instance in header texts like this one:

/*********** thread_runtime.c.kit: runtime generation ***********/

We measured that building the parsing tables for this bottom-up parser requires
a time complexity which is exponential in the number of same characters put
side by side. We then opted for direct top-down backtracking [5] implementation
of the parsing algorithm, with two optimizations:

– When evaluating Ji jK](w), we do not attempt every decomposition of w.
Instead, we try to parse i on w, and we ask it to return the set of all the
decompositions of w for which it may return an environment, together with
the abstract environment. This is much more efficient in particular when
analyzing fixed strings, which is the most common template instructions.

– Abstract backward evaluation of a template i is thus a function of type
N → P(N × E]∨), where the integer represents a position in the string. To
avoid reanalyzing the same position several times, we use memoization tables,
like top-down chart parser [23] or packrat parsers [15].

8.4 Handling cyclic recursive calls

The most important limitation of our implementation is that we do not handle
templates that correspond to left-recursive grammars (i.e. that recursively call a
template in left position). We implemented this limitation because it is easy to
detect if the non-terminal corresponding to a template function is called twice on
the same position, which allows returning an error (instead of entering an infinite
loop); because cyclic recursive calls did not appear in our industrial examples or
case study (it seems difficult to obtain a singleton abstract environment when
there are cyclic recursive calls); and because in many cases, it is easy to make
the recursive calls non-cyclic (e.g. by systematically inserting parentheses when
needed). Still, it is interesting to see if we could lift these limitations.

First, using grammar analysis, it would be theoretically easy to detect left-
recursive calls that are not cyclic (i.e. for which the recursive cycle is followed by
a terminal or a non-terminal that cannot produce the empty string), and allow
the recursion to continue in this case.
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kit template LoC Output file Lines Chars Parsetime (s)
Equivalent
classes

app.psy.runtime.tak.kit 251 app.psy.runtime.tak 345 10158 0.00 1
hal_error_runtime.c.kit 20 hal_error_runtime.c.kit 46 894 0.00 1
hal_runtime.c.kit 39 hal_runtime.c 34 1292 0.00 1
hal_sources.c.kit 63 hal_sources.c 31 838 0.00 1
runtime.c.kit 31 runtime.c 30 737 0.00 1
thread_runtime.c.kit 14 thread_runtime.c 10 164 0.00 1

Table 1. Evaluation on real-world templates.

Proper handling of truly cyclic recursive calls would require more substantial
change, but these changes can be dealt with existing abstract interpretation
tools. We can draw ideas from shape analysis to precisely represent the traver-
sal of environments in recursive cycles, such as regular expression on access
paths [12] or the inductive predicates of separation logic [6]. We can introduce
widening [8] points when analyzing cycling recursive templates to compute an
over-approximation of the environments for every possible depth of recursive calls
to templates. Thus, abstract interpretation again provides the required tools to
implement this extension.

8.5 Evaluation

Research questions Our main goal is to evaluate whether reversing template is
feasible on real templates. We evaluated the following research questions:

– RQ0: Soundness check: does our algorithm return the expected result?
– RQ1: Efficiency: how fast is the algorithm?
– RQ2: Precision: is the algorithm precise on usual templates and outputs?

Protocol We focused on 6 representative .kit template files given by the industrial
company developping its in-house Kit language, together with sample outputs,
to evaluate the feasibility of the technique.

The results are given in Table 1, which provides the name of the kit file, the
number of lines (including comments), the name of the output file, its number of
lines and character, the time required to parse the file as reported by time, and
the number of equivalent classes (i.e., number of minimal databases) retrieved
by our tool. In all the cases, running the parser on the sample application took
less than 0.01s. The computed abstract environment was precise, and a single
equivalence class was returned.

To check soundness, we created 7 kit files corresponding to different ambiguous
grammars. In each, our tool could retrieve all the expected abstract environments.

Finally, to evaluate scalability, we created a template with a single for

template printing numbers separated by ’;’, and we evaluated it on sequences of
different length. The results are reported in Table 2. This table shows that if the
execution parsing time is supra-linear in some cases, it is able to handle outputs
of fairly large size, sufficient for the generation of code in embedded systems. We
could not try larger size has they created a stack overflow within our tool.

23



Sequence length 10000 20000 30000 40000
Parsing time (s) 18.8 71.65 148.95 344.22

Table 2. Measuring parsing time on large views.

Conclusions The technique had no problem handling existing templates. We feared
that reversing the templates on some outputs might be ambiguous and that we would
have to perform disambiguation using comments, but it actually never happened. We
thus conclude that the technique is viable for reversing templates used to produce
embedded systems code.

9 Related work

Inversion of injective programs Many of the work on program inversion is in
the setting of injective functions, that only have a single preimage. In this setting,
an early technique for inversion of string-to-string programs is the grammar-based
approach of Yellin and Mueckstein [48]. Matsuda et al. [31] extends their idea to
first-order functional programs transforming abstract datatypes and, like we do,
makes use of the correspondance between evaluation trees and parse trees, and
use constraints to recover the input. Finally, Matsuda and Wang [32] extends
the technique to programs transforming abstract data types into strings, i.e.
transforms a pretty-printer in a parser, which is quite similar to our problem.

We build on this work by using set-based compositional reasoning to handle
non-injective functions, which may have multiple pre-images, and by proposing
abstract interpretation as a framework to finitely represent these sets. This
remove important limitations, such as the need for the function that we want to
invert to be injective or to obey other sufficient conditions, such as being affine
(variables cannot be duplicated, unlike in Figure 2) or nonerasing (the view must
tell about every variable in the source).

Other techniques for inversing programs that also focus on injective programs
include the use of invertible combinators [35], transformation of term rewriting
systems [36], or (non-terminating) universal algorithms [1].

A generic technique for writing invertible programs, which do not need to be
injective, is logic programming [25]. But logic programming, or, more generally,
generation of constraints to be solved by an external solver, cannot finitely
represent the set of all solutions, and can only enumerate solutions.

Finally, a related topic is that of bidirectional transformations [11, 21], that
aim at running programs in reverse, but do so to solve the view-update problem
[3]. This problem is formalized using the concept of lenses [16]. A lens is a pair
containing a function get from a source to a view, and a function put that takes
the original source, an updated view, and modifies the source based on the
modifications on the view. This problem is distinct from our problem of finding
all the preimages of a given function, but is related, and there are interesting
convergence point between these problems. In particular, using the constant
complement approach [3], one can derive a put function from inversion of the
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get one, that preserves the part of input not used by the program, an approach
called syntactic bidirectionalization [17, 29].

Approaches based on tree transducers An important line of work (e.g.
[13, 18, 27, 30, 34, 39, 47]) is concerned with the problem of static type checking
of XML transformations. In those, the template language is represented by a
model which is generally a tree transducer, which takes and produces a tree.
Then, given a transducer and a type Rout describing the set of outputs, the
inverse type checking problem consists in finding the exact set Rin of inputs that
may produce an output in Rout. Such an approach could be used for template
inversion of a word w, using the singleton {w} as Rout.

An important issue here is that the output in our problem is a string, and
not a tree; thus the model of program that we would have to use is that of a
tree-to-string transducer. Because strings are less structured than trees (which
leads to parsing ambiguities when performing the inversion), this problem is
more difficult. As said in Seidl et al. [45], "Amazingly little has been known so
far for tree-to-string transducers": although their paper provides an algorithm
for deciding the equivalence between tree-to-string transducers (using abstract
interpretation), to our knowledge no algorithm exists for inverting the execution
of such transducers.

Another issue is that if tree transducers represent a model of a template
language, this model can differ from practical languages. Tree transducer replace
conditions by non-deterministic choice, cannot compute expressions on the input
data, and do not incorporate a notion of sequence. Such extensions could be
handled by inventing extensions of existing transducers; for instance macro forest
transducers [39] can deal with sequences and can be type-checked, albeit with
an algorithm of high complexity. We chose abstract interpretation because it
provides a framework to efficiently extend and combine different abstractions
[9], some of which could be transducers or regular tree languages; and that it
allows to explicitly choose the trade-off between precision and efficiency of inverse
computation.

Abstract interpretation Abstract interpretation [8] is a sound method to
derive sound static analysis of programs by the systematic construction of abstract
domains [9]. In the canonical abstract interpretation framework, the abstract
domain is a lattice which is in Galois-connection with a set, which is often the set
of reachable states (or the set of traces) in the program. However, a backward
analysis [7] computes an over-approximation of a set of states that can reach
some condition, which is related to computing the set of preimages to a function.
In program analyzes, backward analyses are usually too imprecise if they are not
combined with a forward analysis Rival [43]. In our work, the fact that templates
can be approximated using a contex-free grammar that generate a finite number
of parse trees for a given output word, where parse trees can be viewed as a kind
of evaluation trace, allows a very precise backward analysis (with no need for
widening or approximation of joins), but abstract interpretation is still needed to
handle the remaining imprecision.
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The powerset domain that we use was introduced by Cousot and Cousot [9],
and studied by Filé and Ranzato [14]. Bagnara et al. [2] noted that computing
a widening operation on this domain is difficult; fortunately we do not need to
compute a least fixpoint and thus do not need to introduce a widening operator
(even with the introduction of functions in the template, the parse tree for a
given output text is always finite).

Ranzato [41] defines two notions of completeness in abstract interpretation,
which are completeness and exactness (also called forward-completeness). We use
the exactness notion in our paper, to characterize the cases when the abstraction
exactly represents the set of possible input environments. Exactness is less
commonly used than completeness in abstract interpretation because having
exact transfer functions yields an exact representation of the greatest fixpoint,
and not of the usual least fixpoint. In our case, exactness can be used because
the semantics that we analyze do not need to compute a fixpoint. Ranzato and
Zanella [42] also uses exactness to verify properties over Support Vector Machines,
which also are loop-free programs.

10 Conclusion
We studied the problem of reversing programs written in template languages,
that transform tree-structured data into text. The template language that we
use is expressive, and programs in this language are generally not injective (they
have multiple preimages), not affine (some input variables can appear at several
locations in the output), and erasing (they provide only a partial view of the
source); they can use arbitrary expressions, which makes the problem undecidable
and challenging. We propose a technique based on deriving a "backward" set-
based denotational semantics from the forward big-step semantics, with suitable
modifications to avoid the need to perform any fixpoint computation; and to use
abstract interpretation to over-approximate this set. Using concepts from abstract
interpretation, we can then study useful topics like precision or simplification of
the abstract representation of the set of preimages. We believe that these concepts
are generally useful when reasoning about reversing non-injective programs, and
could find good use in other areas of program inversion, such as bidirectional
transformations.

A Appendix

A.1 Template viewed as a context-free grammar

This appendix explains how templates in the rtl template language may be
approximated using a context-free grammar. Figure 12 describes this translation
(where | denotes alternative choices, · concatenation, ∗ repetition).Gt is a grammar
rule that corresponds to the printed representations of objects of type t.

This translation is not exact but approximate, in that the language

Theorem 11. Given a template instruction i and a word w, if there exists Γ
such that LiM(Γ ), then w belongs to the language generated by the context-free
grammar T (i).
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T (w) , w

T (〈= p:t 〉) , Gt

T (i1 i2) , T (i1) · T (i2)

T (〈if p〉 i1 〈else〉 i2 〈end〉) , T (i1) | T (i2)

T (〈for x in p〉 i 〈end〉) , (T (i))∗

T (〈apply φ with x = p〉) , φ

productions , {φ→ T (∆(φ)) | φ ∈ dom(∆)}

Fig. 12. Translation of the rtl template language to a context-free grammar.

Proof. By induction on the instructions of the language.

Given a context-free grammar, we note by α⇒ β, where α and β are both
words over terminals and non-terminals, the fact that β derives from α, meaning
that β is obtained from α by substituting a non-terminal by its production [20].
We note by ⇒+ the transitive closure of ⇒. We say that a grammar is cyclic if
there is a nonterminal φ such that φ⇒+ φ.

Theorem 12. Given a context-free grammar, there exists a word w for which
there is an infinite number of parse trees only if the grammar is cyclic.

Proof. We suppose that the grammar is not cyclic. We consider a non-terminal
φ in the grammar. If there is a string such that φ ⇒+ αφβ, then either α or
β must derive into a non-empty string (they cannot both derive in the empty
string, otherwise the grammar would be cyclic).

This means that given a word w, in any derivation from φ to w, φ can be
replaced only a finite number of time.

As this is true for every non-terminal φ and there is a finite number of
non-terminals, the derivation from any non-terminal symbol to w must be finite.
Because of the correspondence between derivations and parse trees [20], this
means that there is a finite number of parse trees.

Thus, if w is a word produced by a template whose translation is a grammar
that is not cyclic, then only a finite number of parse trees can parse w. The
For-Alt rule is a relaxation of this constraint, allowing a finite number of parse
tree even in some cyclic grammars (by considering a variation of context-free
grammars where the * of repetition is a native construct).

A.2 Definition of footprint

Formally, we first extend the set of paths so that they can represent a specific
element in a sequence, by adding the p[k] construct:

P 3 p, q , x | p.f | p[k]
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Then, we define the footprint F of a template instruction i and environment
Γ as the set of paths that is used during the evaluation of LiM(Γ ). The footprint
is computable, and is defined recursively in Figure 13. This function makes use
of a substitution function subst .

subst : P× X× P→ P

subst(x, x, p) = p

subst(y, x, p) = p when y 6= x

subst(q.f, x, p) = subst(q, x, p).f
subst(q[k], x, p) = subst(q, x, p)[k]

F : I× E ⇀ P(P)
F(w, Γ ) = {}

F(〈= p:t 〉, Γ ) = {p}
F(i j, Γ ) = F(i, Γ ) ∪ F(j, Γ )

F(〈if p〉 i 〈else〉 j 〈end〉, Γ ) =
{
F(i, Γ ) ∪ {p} if Γ [p] = true
F(j, Γ ) ∪ {p} if Γ [p] = false

F(〈apply f with x = p〉, Γ ) =
{ subst(q, x, p) : q ∈ F(∆(f), Γ [x 7→ Γ [p]]) }

F(〈for x in p〉 i 〈end〉, Γ ) =⋃
k∈1..n

{subst(q, x, p[k]) : q ∈ F(i, Γ [x 7→ Γ [p][k]])}

Fig. 13. Definition of the footprint of a template evaluation

Definition 5. Given a set of paths P ∈ P(P), we define the restriction of an
environment Γ ∈ E to P as follows:

restrict : E× P(P)→ E

restrict(Γ, P )[p] = Γ [p] if p ∈ P
restrict(Γ, P )[p] is unbound otherwise.

The fact that the footprint indeed corresponds to the paths that are necessary
for the evaluation of the template is given by the following theorems:

Theorem 13. Let paths(Γ ) represent all the paths bound in Γ . Then

1. LiM(Γ ) = LiM(restrict(Γ,F(i, Γ )))
2. If p ∈ F(i, Γ ), then LiM(restrict(Γ, paths(Γ )\{p})) = ⊥
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